End of Unit Assessment | Computing | Year 5 | Controlling Devices: Flowol

All	Most	Some
Follow written instructions to draw a simple flowchart, insert symbols into a flowchart, add inputs into a flowchart and identify conventional symbols, understanding the process of each stage.	Create a program to control a simple sequence, modify symbols in a flowchart for effect, create flowcharts for multiple inputs and outputs, use decisions and subroutines, program inputs and outputs.	Solve a given problem independently with a flowchart solution, organized int multiple subroutines and create a program to control a sequence with variables.
33\%	33\%	33\%
Name Name Name Name	Name Name Name Name	Name Name Name Name

		$\begin{array}{r} \stackrel{0}{E} \\ \underset{\sim}{Z} \\ \hline \end{array}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\begin{aligned} & \stackrel{0}{E} \\ & \stackrel{\pi}{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{E} \\ & \underset{Z}{Z} \\ & \hline \end{aligned}$			$\begin{array}{r} \text { © } \\ \text { E } \\ \hline \end{array}$	$\begin{aligned} & \stackrel{0}{E} \\ & \stackrel{E}{\mathrm{I}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{E} \\ & \stackrel{\text { ET }}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{0}{E} \\ & \underset{Z}{\pi} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{\stackrel{E}{5}} \\ & \underset{\sim}{\mathrm{~L}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{E} \\ & \underset{Z}{Z 5} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { © } \\ & \stackrel{⿸ 厂 ⿱ 二 ⿺ 卜 丿 口 ~}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{0}{\stackrel{E}{E}} \\ & \frac{\pi}{\mathrm{~L}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E } \\ & \stackrel{E}{\text { IN }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{\text { ET}}{\mathrm{Z}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{E} \\ & \stackrel{\text { In }}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{E} \\ & \underset{Z}{\pi} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\otimes}{E} \\ & \stackrel{\pi}{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{E} \\ & \stackrel{\pi}{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & \sum_{E}^{0} \\ & \underset{Z}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{E} \\ & \stackrel{\text { KIL }}{ } \\ & \hline \end{aligned}$		$\begin{array}{r} \text { © } \\ \text { Z } \\ \hline \end{array}$	$\begin{aligned} & \stackrel{E}{E} \\ & \text { Z } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{E} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$			$\begin{aligned} & \stackrel{0}{E} \\ & \text { Z } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{\stackrel{0}{E}} \\ & \underline{\widetilde{Z}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{E} \\ & \text { Zָ̃ } \\ & \hline \end{aligned}$	\％ \％ ¢ \％ \circ
	\％met by child	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	
	Has the child met the all and most statements？	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	n	0\％
진	Follow written instructions to draw a simple flowchart．																																			0\％
	Insert symbols into a flowchart．																																			0\％
	Add inputs into a flowchart．																																			0\％
	Identify conventional symbols，understanding the process of each stage．																																			0\％
$\left\lvert\, \begin{aligned} & \text { 出 } \\ & 0 \\ & \mathbf{\Sigma} \end{aligned}\right.$	Create a program to control a simple sequence．																																			0\％
	Modify symbols in a flowchart for effect．																																			0\％
	Create flowcharts for multiple inputs and outputs．																																			0\％
	Use decisions and subroutines．																																			0\％
	Program inputs and outputs．																																			0\％
el000	Solve a given problem independently with a flowchart solution，organized into multiple subroutines．																																			0\％
	Create a program to control a sequence with variables．																																			0\％

		㕩	先	先	先	${ }_{2}^{\text {先 }}$		㰮	${ }_{2}^{\text {E }}$		先	${ }_{2}$	z	先	先		先	先	z	左	㖘	z	唇	${ }_{\text {L }}^{\text {L }}$	z		年	z	磈		z	先	${ }_{2}^{\text {気 }}$	z		
	\％met by child	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	0\％	
1	I can draw and interpret a flowchart with the correc symbols．																																			0\％
	I can follow a sequence of written instructions in a flowchart																																			0\％
	I can draw a flowchat using the correct symbols．																																			0\％
	I can connect symbols in a sequence．																																			0\％
2	I can create and edit a flowchart to control a simulated device．																																			0\％
	I can insert symbols in sequence to create a working flowchart																																			0\％
	I can insert new symbols to modify flowhart																																			0\％
	I can edit symbols to modify the effect．																																			0\％
	I can deletet symbols．																																			0\％
3	I can control multiple outputs at the same time．																																			0\％
	I can identify the conventional sequence for a set of traffic lights．																																			0\％
	I can create a flowchart to program one set of traffic lights．																																			0\％
	I can edit a flowchart to control two sets of traffic lights at the same time．																																			0\％
4	I can use a decision symbol based on the status of an input：																																			0\％
	I can connect a decision symbol in a flowchart．																																			0\％
	I can include the use of an input．																																			0\％
	I can program different outputs based on the status of an input．																																			0\％
	I can create a repeating loop．																																			0\％
5	I can create a flowchart program containing a subroutine．																																			0\％
	I can create a subroutine separate to a main flowchart program．																																			0\％
	I can call a subroutine from the main flowchart program．																																			0\％
	I can call multiple subroutines within a program．																																			0\％
6	I can design，write and debug my own flowchart program for a given task．																																			0\％
	（ I an decompose a problem into smaller parts．																																			0\％
	I can use repestion to check multiple inputs．																																			0\％
	I can detect errors in a flowchart and correct them．																																			0\％

Regent Studies | www.regentstudies.com

NC Aims Covered in the Controlling Devices: Flowol Unit

Design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts.

Use sequence, selection, and repetition in programs; work with variables and various forms of input and output.

Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs.

I can...

Computing | Year 5 | Controlling Devices: Flowol

Computing: Controlling Devices: Flowol

